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FINITE ELEMENT MASS MATRIX
LUMPING BY NUMERICAL INTEGRATION

WITH NO CONVERGENCE RATE LOSS

ISAAC FRIEDt and DAVID S. MALKUS:j:

Boston University, Department of Mathematics, Boston, MA 02215, U.S.A.
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Abstract-Using numerical integration in the formation of the finite element mass matrix and placing the
movable nodes at integration points causes it to become lumped or diagonal (block diagonal) with the optimal
rate of energy convergence retained.

LUMPING

Application of the standard finite element method to eigenproblems produces the algebraic
Kx = AMx with a (consistent) non-diagonal matrix M. The desire to alter the method to deliver a
diagonal (lumped) M is understandable in view of the computational simplifications and savings
that ensue from that.

Numerical integration is a technically convenient, routinely used device in the finite element
method and can expediently be used [1] to lump the mass matrix with no accuracy loss.

Both in statics and dynamics in order to maintain with numerical integration [2-5] the full rate
of energy convergence of which the element is capable all the energy terms need be integrated by
a scheme of order 2(p - m), p being the degree of the complete polynomial in the shape functions
and m the highest differentiation order in the energy expression. Since the mass matrix originates
from the integration of only the displacements squared and not their derivatives, placing the
element nodes at integration points will result in diagonal element and global mass matrices with
the nodal masses being the integration weights. If the weights and nodal point locations can be
adjusted to provide a numerical integration scheme of order 2(p - m) the optimal rate of
convergence is anticipated. The integration scheme for the mass matrix need not be used to
integrate the potential energy in the formation of the element stiffness matrix and a more efficient
scheme could be employed. But once the location of the nodes have been decided upon all
element matrices have to be formed relative to them.

To fix ideas consider the cubic (p = 3) string (m = I), four nodal point element in Fig. 1. To
retain the sixth order accuracy [6,7] of this element a fourth order numerical integration scheme
is called for. The two end nodes are fixed and only the masses can be varied at them while the
interior nodes can be displaced and the masses at them varied. Presently the integration scheme
becomes
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Lu(x) dx = m,[u(-I) + u(1)] + m2[u(-c) + u(c)]
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Fig. 1. Convergence of the fundamental eigenvalue Aof a fixed string discretized with the shown element vs

the number of elements N. per half span.

and mh m2 and c are determined by the condition that the integration scheme in equation (1) be
exact for a polynomial u of degree 5, yielding c = ±y(5/5), m, = 1/6 and m2 = 5/6, a scheme
attributed to Lobatto.

Figure 1 describes the convergence of the first eigenvalue (A = 7T
2

) of a fixed string discretized
with this matrix vs the number of elements Ne, and indeed the optimal rate of convergence
O(Ne-

6
) is practically achieved.

In higher dimensions some of the nodal masses may vanish or even become negative as in the
membrane elements of Fig. 2, causing the higher, uninteresting, portion of the spectrum to
become either infinite or negative. (Straight and curved multi-dimensional elements in which the
nodal points pattern permits a product integration rule will have positive masses; the product of

p= I p=2 p=3

m,=a/3 m,=O m,=-a/60
a=area m2=a/3 m2=a/lO

m3=9a/20

Fig. 2. Triangular membrane elements of the first (p = 1), second ~ = 2) and third order. The mass m3 is at
the center of area and c = \/3(Y3 - 1l/6.
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the corresponding one-dimensional ones.) To see the effect of zero and negative masses on the
spectrum the problem of a square membrane, fixed and free, was solved with the quadratic
(p = 2) and cubic (p = 3) elements of Fig. 2.

Figure 3 describes the convergence of the first eigenvalue A (exact 27T 2
) with the number of

elements per side Nes• Curve (a) refers to discretization with a consistent mass matrix and (b) to
the lumped. In both cases the optimal rate O(N~~4) is achieved, with the lumped yielding a
somewhat better approximation than the consistent. The consistent mass matrix results from the
strict application of the finite element (Rayleigh-Ritz) method and provides therefore an upper
bound on the exact eigenvalues. This bound is lost with the lumped formulation and the
approximate eigenvalues may decline and yield a better accuracy.

The behavior of the higher eigenvalues can be observed in Table 1 in which the 11 first
eigenvalue of the fixed membrane with quadratic elements and a 6 x 6 mesh is given for both the
consistent and lumped formulations. The consistent formulation furnishes in this case 36
eigenvalues and the lumped 27 with the rest being infinite.

Figure 4 and Table 2 give similar results for the cubic element.
Table 3 list all the eigenvalues sorted according to magnitude, of a free-free membrane

discretized by a 1 x 1 mesh of cubic triangular elements to show the distribution of negative
eigenvalues.

The influence of lumping on the accuracy of the eigenvectors is to be seen in Tables 4 and 5.
To compute all eigenvalues of Kx = AMx for the present experimental purposes, the general

eigenvalue problem could have been transformed into that of finding the eigenvalues of either
L -I ML -T or L TM- 1L in which the triangular matrix L is such that LL T = K, and solved with
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Fig. 3. Convergence of Ain a fixed square membrane discretized with quadratic triangular elements vs the
number of elements per side N". Curves (a) and (b) refer to a consistent and lumped formulation,

respectively.
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Fig. 4. Same as Fig. 3but now with cubic elements.

Table 1. Eigenvalues of a fixed membrane discretized
by quadratic (p ~ 2) triangular membrane elements.

Values are for a 6 x 6 mesh

Mode

1,1
3,1
1,3
3.3
5,1
1.5
3.5
5.3
5.5
7,1
1,7

Exact

19·739
98·70
98·70

177·7
256·6
256·6
335·6
335·6
493·5
493·5
493-5

Lumped

19·738
98·22
98·22

176·4
242·7
242·7
318·7
318·7
444·6
444·6
451·0

Consistent

19·758
99·74

100·07
185·3
272·8
273·0
365·4
389·8
565·2
570·0
604·1

Table 2. Eigenvalues of a fixed membrane discretized
by cubic (p ~ 3) triangular membrane elements.

Values are for a 4 x 4 mesh

Mode

1,1
:1,1
1.3
3.3
5,1
1.5
3.5
5,3
5.5
7,1
1,7

Exact

19·7392
98,70
98·70

177·65
256,6
256·6
335·6
335·6
493·5
493·5
495·3

Lumped

19·7399
98·77
98·84

179·92
250·9
255·3
317-9
347·4
450·1
456·4
517·5

Consistent

19·7396
98,80
98·87

179·50
264·4
264·7
348·3
382·0
544·3
553·3
553·3
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Table 3. All 15 eigenvalues of a free-free membrane
discretized with a I x I mesh of triangular cubic

elements

Mode Exact Lumped Consistent

0,1 9·87 9·67 9·88
1,0 9·87 9·77 9·88
1,1 19·7 18·9 21·3
2,0 39·5 49·5 48·8
0,2 39·5 50·0 54·9
1,2 49·3 57·6 61·8
2,1 49·3 60·0 66·5
2,2 79 60 128
0,3 89 65 170
3,0 89 -66 170
3,1 99 -78 178
1,3 99 83 190
2,3 128 123 249
3,2 128 -149 353
0,4 158 -149 400

Table 4. l, and angular (degrees) error in [z·normalized eigenvectors in a fixed
membrane discretized by cubic (p = 3) triangular elements. Values are for a 2x 2

mesh using symmetry

Exact
Mode eigenvalue

Error norm
Lumped Consistent

Angular error
Lumped Consistent

1,1
3,3

19·739
177-65

0·006
0·22

0·003
0·16

0·37
24

0·16
17

Table 5. Same as Table 4 but for a 4x 4 mesh

Exact
Mode eigenvalue

Error norm
Lumped Consistent

Angular error
Lumped Consistent

1,1
3,3

19·739
177·65

0·0002
0·02

0·0003
0·01

0·02
2·3

0·03
2·0

any method applicable to real symmetric matrices. In free-free vibration problems where both M
and K might be singular inverse iteration could be applied to the shifted problem
(K + AoM)x = I-tMx, Ao being the shift.

In practice the entire spectrum is not required and both inverse iteration and residual and
gradient methods, which are often used to extract the lower eigenvalues, can be used unchanged
with negative or zero masses. In the first method the iterated vector x is improved according to
Ly I = Mxo, L TXI = Y1. In the latter we start by requiring to minimize I-t 2 = (x TKx /xTMx)2 in order
to obtain the lowest positive A. The gradient of I-t 2 is

2 xTKx
VI-t = 4 (x TMx)2 (Kx -I-tMx). (2)

Since x TKx /(x TMx)2 is non negative we neglect it and use only the residual r = Kx - I-tMx as in
[8,9].
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In direct time integration of the equations of motion solution by eigenvector expansion (mode
superposition) is directly applicable with zero or negative masses. In difference methods, for
stability reasons, one might have to use a lower integration rule [10] producing a positive diagonal
M in order to arrive at a fully explicit difference scheme.

Otherwise, consider the heat conduction equation

KT+Mt=F(t)

to which the transformation (J = Te- Ao
' is applied. This leads to

(3)

(4)

where Ao can be adjusted such that the eigenvalues of (K +AoM)x = f.LMx are positive. When an
explicit scheme is used to solve (3) or (4), and that is a compelling reason for lumping M, stability
is assured with ot ",; 2/ f.Lmax.
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